
5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 231

IF…THEN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

IF Condition(s) THEN Address

IF Condition(s) THEN Statement(s) { ELSE Statement(s) }

IF Condition(s) THEN
 Statement(s)
{ ELSEIF Condition(s) THEN
 Statement(s)… }
 { ELSE
 Statement(s) }
ENDIF

Function
Evaluate Condition(s) and, if true, go to the Address or execute the
Statement(s) following THEN, otherwise process the ELSEIF/ELSE
block(s), if provided. ELSEIF is optional and works just like IF, but is only
evaluated if the Condition(s) in the preceding IF is false. The ELSE block is
optional and is executed if all Condition(s) in all preceding IF/ELSEIFs are
false. The program will continue at the next line of code (single-line
syntax) or the line that follows ENDIF (multi-line syntax) unless Address or
Statement(s) are executed that cause the program to jump.

• Condition is a statement, such as “x = 7” that can be evaluated as
true or false. Condition can be a very simple or very complex
relationship, as described below.

• Address is a label that specifies where to go in the event that
Condition(s) is true.

• Statement is any valid PBASIC instruction. Multiple statements
may be placed on the same line (though not recommended) by
separating each statement with a colon (:).

All 2

NOTE: PBASIC 1.0 and
PBASIC 2.0 only support
IF Condition(s) THEN Address.
PBASIC 2.5 supports all syntax
variations.

1 All 2

All 2

IF…THEN – BASIC Stamp Command Reference

Page 232 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS1 All BS2 Models

Comparison
Operators =, <>, >, <, >=, <= =, <>, >, <, >=, <=

Conditional
 Logic Operators AND, OR NOT, AND, OR, XOR

Format of
Condition

Variable Comparison Value;
where Value is a variable

or constant

Value1 Comparison Value2;
where Value1 and Value2 can by

any of variable, constant or
expression

Parentheses Not Allowed Allowed
Max nested
IF…THENs n/a 16

Max ELSEIFs
per IF n/a 16

Max ELSEs per IF n/a 1
Related Command None SELECT…CASE

Table 5.38: IF...THEN Quick Facts.

Explanation
IF...THEN is PBASIC's decision maker that allows one block of code or
another to run based on the value (True or False) of a condition. The
condition that IF...THEN tests is written as a mixture of comparison and
logic operators. The available comparison operators are:

Comparison Operator
Symbol

Definition

= Equal
<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.39: IF...THEN Comparison
Operators.

Comparisons are always written in the form: Value1 Comparison Value2.
The values to be compared can be any combination of variables (any size),
constants, or expressions.

The following example is an IF…THEN command with a simple
condition:

IF value < 4000 THEN Main

This code will compare the value of value to the number 4000. If value is
less than 4000, the condition is true and the program will jump (implied

NOTE: On the BS1, expressions
are not allowed as arguments.
Also, the Value1 (to the left of
comparison) must be a variable.

1

A SIMPLE FORM OF IF…THEN

1 All 2

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 233

GOTO) to the label called Main. This is the simplest form of IF…THEN
and is the only form supported by PBASIC 1.0 and PBASIC 2.0.

The Condition(s) argument is very powerful and flexible. In the next few
pages we’ll demonstrate this flexibility in great detail and afterwards we’ll
discuss the additional, optional arguments allowed by PBASIC 2.5.

Here's a complete example of IF...THEN in action:

value VAR Word

Main:
 PULSIN 0, 1, value
 DEBUG DEC value, cr
 IF value < 4000 THEN Main
 DEBUG "Pulse value was greater than 3999!"

Here, the BASIC Stamp will look for and measure a pulse on I/O pin 0,
then compare the result, value, against 4000. If value is less than (<) 4000, it
will jump back to Main. Each time through the loop, it displays the
measured value and once it is greater than or equal to 4000, it displays,
"Value was greater than 3999!"

On all BS2 models, the values can be expressions as well. This leads to
very flexible and sophisticated comparisons. The IF…THEN statement
below is functionally the same as the one in the program above:

IF value < (45 * 100 – (25 * 20)) THEN Val_Low

Here the BASIC Stamp evaluates the expression: 45 * 100 = 4500, 25 * 20 =
500, and 4500 – 500 = 4000. Then the BASIC Stamp performs the
comparison: is value < 4000? Another example that is functionally the
same:

IF (value / 100) < 40 THEN Val_Low

It's important to realize that all comparisons are performed using
unsigned, 16-bit math. This can lead to strange results if you mix signed
and unsigned numbers in IF...THEN conditions. Watch what happens
here when we include a signed number (–99):

WATCH OUT FOR UNSIGNED MATH

COMPARISON ERRORS

All 2

All 2

All 2

ALL ABOUT CONDITION(S).

NOTE: For BS1's, change line 1 to
SYMBOL value = W0
and line 4 to
DEBUG #value, CR

IF…THEN – BASIC Stamp Command Reference

Page 234 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 Test:
 IF -99 < 100 THEN Is_Less
 DEBUG "Greater than or equal to 100"
 END

Is_Less:
 DEBUG "Less than 100"
 END

Although –99 is obviously less than 100, the program will say it is greater.
The problem is that –99 is internally represented as the two’s complement
value 65437, which (using unsigned math) is greater than 100. This
phenomena will occur whether or not the negative value is a constant,
variable or expression.

IF...THEN supports the conditional logic operators NOT, AND, OR, and
XOR to allow for more sophisticated conditions, such as multi-part
conditions. See Table 5.38 for a list of the operators and Table 5.40 for
their effects.

The NOT operator inverts the outcome of a condition, changing false to
true, and true to false. The following IF...THENs are equivalent:

IF x <> 100 THEN Not_Equal
IF NOT x = 100 THEN Not_Equal

The operators AND, OR, and XOR can be used to join the results of two
conditions to produce a single true/false result. AND and OR work the
same as they do in everyday speech. Run the example below once with
AND (as shown) and again, substituting OR for AND:

value1 VAR Byte
value2 VAR Byte

Setup:
 value1 = 5
 value2 = 9

Main:
 IF value1 = 5 AND value2 = 10 THEN Is_True
 DEBUG "Statement is False"
 END

Is_True:
 DEBUG "Statement is True"
 END

NOTE: For BS1's, change lines1 and 2
to:
SYMBOL value1 = B2
SYMBOL value2 = B3

LOGICAL OPERATORS (NOT, AND, OR

AND XOR).

NOTE: The NOT and XOR operators
are not available on the BS1.

1

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 235

The condition “value1 = 5 AND value2 = 10” is not true. Although value1
is 5, value2 is not 10. The AND operator works just as it does in English;
both conditions must be true for the statement to be true. The OR operator
also works in a familiar way; if one or the other or both conditions are
true, then the statement is true. The XOR operator (short for exclusive-
OR) may not be familiar, but it does have an English counterpart: If one
condition or the other (but not both) is true, then the statement is true.

Table 5.40 below summarizes the effects of the conditional logic operators.
On all BS2 models you can alter the order in which comparisons and
logical operations are performed by using parentheses. Operations are
normally evaluated left-to-right. Putting parentheses around an operation
forces PBASIC 2.0 and PBASIC 2.5 to evaluate it before operations that are
not in parentheses.

Table 5.40: Conditional Logic
Operators Truth Tables.

NOTE: The NOT and XOR operators
are not available on the BS1.

Truth Table for Logical Operator: NOT
Condition A NOT A

False True
True False

Truth Table for Logical Operator: AND

Condition A Condition B A AND B
False False False
False True False
True False False
True True True

Truth Table for Logical Operator: OR

Condition A Condition B A OR B
False False False
False True True
True False True
True True True

Truth Table for Logical Operator: XOR

Condition A Condition B A XOR B
False False False
False True True
True False True
True True False

1

NOTE: On the BS1, parentheses are
not allowed within arguments.

1

IF…THEN – BASIC Stamp Command Reference

Page 236 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Internally, the BASIC Stamp defines “false” as 0 and “true” as any value
other than 0. Consider the following instructions:

flag VAR Bit

Setup:
 flag = 1

Test:
 IF flag THEN Is_True
 DEBUG "False"
 END

Is_True:
 DEBUG "True"
 END

Since flag is 1, IF...THEN would evaluate it as true and print the message
“True” on the screen. Suppose you changed the IF...THEN command to
read “IF NOT flag THEN Is_True.” That would also evaluate as true.
Whoa! Isn’t NOT 1 the same thing as 0? No, at least not in the 16-bit world
of the BASIC Stamp.

Internally, the BASIC Stamp sees a bit variable containing 1 as the 16-bit
number %0000000000000001. So it sees the NOT of that as
%1111111111111110. Since any non-zero number is regarded as true, NOT
1 is true. Strange but true.

The easiest way to avoid the kinds of problems this might cause is to
always use a conditional operator with IF...THEN. Change the example
above to read IF flag = 1 THEN is_True. The result of the comparison
will follow IF...THEN rules. Also, the logical operators will work as they
should; IF NOT Flag = 1 THEN is_True will correctly evaluate to false
when flag contains 1.

This also means that you should only use the "named" conditional logic
operators NOT, AND, OR, and XOR with IF...THEN. The conditional logic
operators format their results correctly for IF...THEN instructions. The
other logical operators, represented by symbols ~, &, |, and ^ do not; they
are binary logic operators.

The remainder of this discussion only applies to the extended IF…THEN
syntax supported by PBASIC 2.5.

INTERNAL REPRESENTATION OF BOOLEAN

VALUES (TRUE VS. FALSE).

AVOIDING ERRORS WITH BOOLEAN

RESULTS.

All 2

All 2

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 237

In addition to supporting everything discussed above, PBASIC 2.5
provides enhancements to the IF…THEN command that allow for more
powerful, structured programming. In prior examples we’ve only used
the first syntax form of this command: IF Condition(s) THEN Address. That
form, while handy in some situations, can be quite limiting in others. For
example, it is common to need to perform a single instruction based on a
condition. Take a look at the following code:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x ' display num
 IF (x // 2) = 0 THEN DEBUG " EVEN" ' even num?
NEXT

This example prints the numbers 1 through 20 on the screen but every
even number is also marked with the text “ EVEN.” The IF…THEN
command checks to see if x is even or odd and, if it is even (i.e.: x // 2 = 0),
then it executes the statement to the right of THEN: DEBUG “ EVEN.” If it
was odd, it simply continued at the following line, NEXT.

Suppose you also wanted to mark the odd numbers. You could take
advantage of the optional ELSE clause, as in:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x
 IF (x // 2) = 0 THEN DEBUG " EVEN" ELSE DEBUG “ ODD”
NEXT

This example prints the numbers 1 through 20 with “ EVEN” or “ ODD”
to the right of each number. For each number (each time through the
loop) IF…THEN asks the question, “Is the number even?” and if it is it
executes DEBUG “ EVEN” (the instruction after THEN) or, if it is not even
it executes DEBUG “ ODD” (the instruction after ELSE). It’s important to
note that this form of IF…THEN always executes code as a result of
Condition(s); it either does “this” (THEN) or “that” (ELSE).

IF…THEN WITH A SINGLE STATEMENT

IF…THEN – BASIC Stamp Command Reference

Page 238 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The IF…THEN in the previous example is called a “single-line” syntax. It
is most useful where you only have one instruction to run as the result of a
Condition. Sometimes this form may be a little hard to read, like in our
above example. For these cases, it would be better to use the “multi-line”
syntax of IF…THEN. The multi-line format allows the same flexibility as
the single-line format, but is easier to read in most cases and requires an
ENDIF statement at the end. For example, our IF…THEN line above
could be re-written as:

IF (x // 2) = 0 THEN
 DEBUG " EVEN" ' even number
ELSE
 DEBUG " ODD" ' odd number
ENDIF

This example runs exactly the same way, is much easier to read and also
leaves extra room to add some helpful comments on the right. We also
indented the Statement(s) for clarity and suggest you do the same.

Did you notice that multi-line syntax requires ENDIF to mark the end of
the IF…THEN…ELSE construct? That is because the Statement(s)
argument can be multiple instructions on multiple lines, so without
ENDIF there is no way to know just where the IF…THEN…ELSE ends.

Occasionally, it may be necessary to have compound IF statements. One
way to achieve this is through nested IF…THEN…END constructs:

' {$PBASIC 2.5}

value VAR Word

DO
 PULSIN 0, 1, value ' measure pulse input
 DEBUG DEC value, CR
 IF (value > 4000) THEN ' evaluate duration
 DEBUG "Value was greater than 4000"
 ELSE
 IF (value = 4000) THEN
 DEBUG "Value was equal to 4000"
 ELSE
 DEBUG "Value was less than 4000"
 ENDIF
 ENDIF
 DEBUG CR, CR
 PAUSE 1000
LOOP

SINGLE-LINE VS. MULTI-LINE IF…THENS

NESTED IF…THENS

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 239

Here, the BASIC Stamp will look for and measure a pulse on I/O pin 0,
then compare the result, value, against 4000. Based on this comparison, a
message regarding the pulse width value will be printed.

If value is greater than 4000, “Value was greater than 4000” is printed to
the screen. Look what happens if value is not greater than 4000… the code
in the ELSE block is run, which is another IF…THEN…ELSE statement.
This “nested” IF…THEN statement checks if value is equal to 4000 and if it
is, it prints “Value was equal to 4000” or, if it was not equal, the last ELSE
code block executes, printing “Value was less than 4000.” Up to sixteen
(16) IF…THENs can be nested like this.

The nesting option is great for many situations, but, like single-line syntax,
may be a little hard to read, especially if there are multiple nested
statements or there is more than one instruction in each of the Statement(s)
arguments. Additionally, every multi-line IF…THEN construct must end
with ENDIF, resulting in two ENDIFs right near each other in our
example; one for the innermost IF…THEN and one for the outermost
IF…THEN. For this reason, IF…THEN supports an optional ELSEIF
clause. The ELSEIF clause takes the place of a nested IF…THEN and
removes the need for multiple ENDIFs. Our IF…THEN construction from
the example above could be rewritten to:

' {$PBASIC 2.5}

IF (value > 4000) THEN ' evaluate duration
 DEBUG "Value was greater than 4000"
ELSEIF (value = 4000) THEN
 DEBUG "Value was equal to 4000"
ELSE
 DEBUG "Value was less than 4000"
ENDIF

This IF…THEN construct does the same thing as in the previous example:

1) if value is greater than 4000:
it displays “Value was greater than 4000”

2) else, if value is equal to 4000 (the ELSEIF part):
it displays “Value was equal to 4000”

3) and finally (ELSE) if none of the above were true:
it displays “Value was less than 4000”

USING THE ELSEIF CLAUSE

IF…THEN – BASIC Stamp Command Reference

Page 240 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Note that an IF…THEN construct can have as many as sixteen (16) ELSEIF
clauses, but a maximum of only one (1) ELSE clause.

There are three demo programs below. The first two demonstrate the
PBASIC 1.0 (BS1) and PBASIC 2.0 (all BS2 models) form of the IF…THEN
command. The last example demonstrates the PBASIC 2.5 (all BS2
models) form of IF…THEN.

Demo Program (IF-THEN.bs1)

' IF-THEN.bs1
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL sample = W0 ' Random number to be tested
SYMBOL samps = B2 ' Number of samples taken
SYMBOL temp = B3 ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG #sample, "divides by 3", CR ' show sample divisible by 3
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN.bs2)

' IF-THEN.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 241

' {$STAMP BS2}
' {$PBASIC 2.0}

sample VAR Word ' Random number to be tested
samps VAR Nib ' Number of samples taken
temp VAR Nib ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG DEC5 sample, " divides by 3", CR
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN-ELSE.bs2)

' IF-THEN-ELSE.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS2}
' {$PBASIC 2.5} ' version 2.5 required

sample VAR Word ' Random number to be tested
hits VAR Nib ' Number of hits
misses VAR Word ' Number of misses

Setup:
 sample = 11500

Main:
 DO
 RANDOM sample ' Put a random number into sample
 IF ((sample // 3) = 0) THEN ' divisible by 3?
 DEBUG DEC5 sample, ' - yes, print value and message
 " is divisible by 3", CR

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

IF…THEN – BASIC Stamp Command Reference

Page 242 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 hits = hits + 1 ' count hits (divisible by 3)
 ELSE
 misses = misses + 1 ' count misses
 ENDIF
 LOOP UNTIL (hits = 10) ' quit after 10 hits

 DEBUG CR,
 "All done.", CR, CR, ' display results
 "Hits: ", DEC hits, CR,
 "Misses: ", DEC misses, CR,
 "Samples: ", DEC (hits + misses)
 END

