
 Chapter 1: Process Control and Flowcharts · Page 1

Chapter 1: Process Control and Flowcharts

BEFORE YOU START

To perform the experiments in this text, you will need to have your Board of Education
connected to your computer, the BASIC Stamp Editor software installed, and to have
verified the communication between your computer and your BASIC Stamp. For
detailed instructions, see What’s a Microcontroller? - a free download from
www.parallax.com. You will also need the parts contained in the Process Control Parts
Kit. For a full listing of system, software, and hardware requirements, see Appendix B.

WHAT IS PROCESS CONTROL?

Process control refers to the control of one or more system parameters, such as
temperature, flow rate or position. While most systems are a continual process, such as
maintaining a temperature, other processes may be a sequence of actions, for example,
the assembly of a product.

Control systems can be very simple or very complex. Figure 1-1 is a block diagram of a
simple continuous control system. For control of the process, an input (such as a setpoint
control or switch) is required into the controller. Based on the input, the controller will
drive an actuator to cause the desired effect on the process.

Examples of actuators are heaters for temperature, pumps for flow, and servos for
positioning.

Process

ActuatorControllerController
Input

Figure 1-1
Simple Process
Control Block
Diagram

Consider the example of a common car heating system. The driver adjusts a temperature
control to change the heat output of the vents. If the driver becomes too warm when
weather conditions change, the temperature control must be adjusted to return to a
comfortable temperature. This is a very simple system in that most automobiles do not
monitor the cabin with temperature sensors to automatically control the heat output of the
vents.

Page 2 · Process Control

A more sophisticated system would have a sensor to monitor temperature and provide
feedback to the controller. The controller would automatically adjust the actuator to
regulate the controlled parameter - temperature. The controller would drive the heating
system to maintain the temperature near the defined set point. An example of this is your
home heating system.

Consider the difference between how the cabin temperature of the automobile is
controlled versus the temperature in a home. In the automobile, the heat output is
variable but has no sensors that directly affect the heat output and maintain temperature.
In home heating a sensor is used to monitor the temperature, but the output of the heating
system is not variable; it is either on or off and cycles to maintain temperature in a
comfortable band. The controller itself may be very simple, such as a metallic coil that
expands and contracts, or more complex, such as a microcontroller similar to the BASIC
Stamp.

These are two very unique means of controlling a process. First, the types of drive
employed may be variable or on/off. Second, whether feedback from the system may or
may not be used in the control of the system.

INPUT, DRIVE AND MONITORING

Just as important as the type of control employed are the methods used for the input into
the controller. Will the inputs provide a simple on/off input to the controller? If using an
analog (variable level) input instead of a digital one (only two levels), how can it be
conditioned for on/off input if needed? If analog input is required, what are methods to
bring this data into the BASIC Stamp? How is the data represented in the BASIC Stamp
and how can it be converted to meaningful information?

In terms of the drive of a system, there are several questions as well. Do we need to
employ on/off control of the actuator, such as turning a heater or pump on or off? Does
the process require variable control of the drive such as regulating heat or flow output
between on or off? Does the process actuator require higher current or voltage than is
provided by the BASIC Stamp? How can the BASIC Stamp outputs be used to control
these actuators?

In industry, monitoring of systems is often required in order to ensure proper control
action and to determine response in order to adjust this control action. Another
monitoring aspect is data logging, or being able to collect real time data from the system
for analysis.

 Chapter 1: Process Control and Flowcharts · Page 3

This text explores these areas of process control through simple circuits using the BASIC
Stamp microcontroller, and illustrates use with much larger systems.

ACTIVITY #1: FLOWCHARTS FOR REPRESENTING PROCESSES

When you hear the word ‘flowchart’, it may bring to mind programming, but a flowchart
is often used for more than programming. A flowchart is a graphical representation of
steps and decisions used to arrive at a logical outcome. It can be used to arrive at
management decisions, system troubleshooting decisions, and other processes that
involve well-defined steps and outcomes. Table 1-1 shows the most popular symbols
used in flowcharting. These blocks, connected with flow lines, are used to describe the
actions and flow of the program.

Table 1-1: Flowcharting Symbols

Start/Stop: Indicates the beginning or end of a program or routine.

Process: Indicates an internal process, such as calculations or
delays.

Input/Output: Indicates an input from an external source or output
to an external source.

Decision: Indicates a decision to continue flow in one of two
directions based on a condition.

Predefined Process: Indicates a predefined process, such as a
subroutine, to be performed.

Matching connectors indicate a connection between two locations
in the flowchart.

Flow lines: Indicates direction of flow between symbols.

Page 4 · Process Control

While flowcharting has fallen out of fashion in many programming circles due to the
advent of object-oriented programming (PBASIC used by the BASIC Stamp is
procedural language), it is still an excellent tool when planning program flow.
Flowcharting is particularly useful in process control because it can be used to visually
represent the steps and decisions required to perform control of the system.

Take the everyday task of preparing the temperature of the shower before stepping into it.
In pseudocode, or English statements outlining the steps to take, this is how we would
proceed:

1. Turn on cold water.
2. Turn on hot water.
3. Wait 3 seconds for temperature to stabilize.
4. Test water temperature.
5. If too hot, then:

a. Turn hot water down.
b. Go back to step 3.

6. If too cold, then:
a. Turn hot water up.
b. Go back to step 3.

7. If just right then get in shower.

While it’s not too difficult to read through these steps to see what actions should be
taken, as a program or procedure becomes more complex it becomes more difficult to
visualize the flow of the process and what actions and branches are needed. For example,
how much more complex would the flow be if the hot water valve becomes fully open
before the optimum temperature is reached?

As complexity increases, a flowchart makes it easier to visualize how the process will
flow. Take a look at the flowchart in Figure 1-2, which describes the same process as the
pseudocode above.

 Chapter 1: Process Control and Flowcharts · Page 5

Figure 1-2 Adjusting Shower Temperature Flowchart

A

Turn On
Cold

Turn On
Hot

Check
Temperature

Get
In

Stop

Yes

No

Too
Hot?

Yes

No

Too
Cold?

ATurn Down
Hot

ATurn Up
Hot

Wait
3 Seconds

Start

Note how each of the symbols is used.

• Typically, an input/output symbol is used when bringing data or information into
the controller (in this case the person adjusting the temperature by sensing and
adjusting the water actuators).

• The processing symbol is used when the controller is performing internal
processing of data or a task, such as waiting or calculations.

• Finally, decision blocks are used to guide the flow of the procedure in one
direction or another based on the decision results.

A decision can take one of two forms:

• Questions resulting in Yes or No.
• Statements resulting in True or False.

Page 6 · Process Control

As humans, we typically work with questions resulting in yes/no. In flowcharting, it is
better to use statements that result in true/false due to the logical nature of programming
where conditions are checked to be true or false. Take the following example for the
shower process:

• Is the water too hot? YES – Turn down the hot.
• The water is too hot. TRUE – Turn down the hot.

In programming, a typical condition may be:

IF (Water_Temp > 95) THEN …

In this example, when the condition is checked, the equality will either be true or false.
Using true/false statements makes the transition from the flowchart to the programming
language easier.

Challenge 1-1: Modify the Flowchart for True/False

√ Modify the flowchart in Figure 1-2 to use true/false statements instead of yes/no
questions.

ACTIVITY #2: SEQUENTIAL FLOW AND CODE

"Sequential flow" means moving from one operation to the next with no branches being
made. In this activity a simple circuit will be used to illustrate principles of sequential
flow and how the PBASIC language is used in programming the BASIC Stamp.

Parts Required

(3) Resistors – 220 Ω
(1) Resistor – 1 kΩ
(1) Photoresistor
(1) Pushbutton – Normally Open
(1) LED – Red
(1) Piezospeaker
(1) Capacitor – 0.1 µF

 Chapter 1: Process Control and Flowcharts · Page 7

√ Construct the photoresistor, LED, piezospeaker, and pushbutton circuits shown
in Figure 1-3.

Figure 1-3 Test Circuit Schematics

For an introduction to building basic circuits with these components, please see
What’s a Microcontroller?, the recommended starting point for the Stamps in Class series. It
is available for free download or purchase from www.parallax.com.

Figure 1-4 is a flowchart to have the circuit continuously perform a sequence of
operations. Without knowing any programming, can you determine what should occur
when the program is entered and run?

Page 8 · Process Control

A

Display
Pushbutton Value

Set LED to
Pushbutton Value

1/4 Second Delay

Measure
Photo Resistor

A

Display
Photo Resistor

Read
Pushbutton

Declarations
and

Initialization

Sound Buzzer
Based on Photo
Resistor Value

Start

Figure 1-4
Simple Sequential
Operation Flowchart

AVOID TYPOS! All of the BASIC Stamp (.bs2) programs listed in this text are available
for free download from the Process Control product page at www.parallax.com.

Example Program: SimpleSequentialProgram.bs2

√ Enter and run SimpleSequentialProgram.bs2.

' -----[Title]---
' Process Control - SimpleSequentialProgram.bs2
' Tests and illustrates sequential flow using a simple test circuit.
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PB PIN 13 ' Alias for pushbutton on P13
PBVal VAR Bit ' Bit variable to hold pushbutton value
PhotoVal VAR Word ' Word variable to hold RC Time value

 Chapter 1: Process Control and Flowcharts · Page 9

BuzzerDur CON 250 ' Constant for duration of tone for buzzer

' -----[Initialization]--
OUTPUT LED ' Set LED pin to be an output
OUTPUT Buzzer ' Set Buzzer pin to be an output

' -----[Main Routine]--
DO
 ' ******** Read Pushbutton
 PBVal = PB ' Read Pushbutton value and assign to PBVal
 ' Display Pushbutton value

 ' ******** Display pushbutton value

 DEBUG CLS, "Pushbutton Value = ", DEC PBVal,CR

 ' ******** Set LED to pushbutton value
 LED = PBVal ' Set LED based on Pushbutton value

 ' ******** Measure Photoresistor
 HIGH Photo ' Charge photoresistor's RC network Capacitor
 PAUSE 10 ' Allow 10 milliseconds to charge fully
 RCTIME Photo, 1, PhotoVal ' Measure discharge time through photoresistor

 ' ******** Display photoresistor value
 DEBUG "Photo RC Time Value = ", DEC PhotoVal,CR

 ' ******** Sound buzzer at set duration at frequency of PhotoVal
 FREQOUT Buzzer,BuzzerDur,PhotoVal

 ' ******** 1/4 seconds delay
 PAUSE 250 ' 1/4 second pause
LOOP ' Loop back to DO to repeat continuously

√ Test the circuit by pressing the pushbutton and varying the light falling on the

photoresistor.
o When the button is pressed does the state of the pushbutton change from

1 to 0 in the Debug Terminal?
o When the button is pressed does the LED change from on to off?
o When the sensor is darkened does the photoresistor RC time value

change in the Debug Terminal?
o Does the frequency output of the buzzer change in relation to the

photoresistor's RC time value? Note that the buzzer has a very limited
frequency response range.

√ If your circuit does not operate properly, verify your circuit connections and
code.

Page 10 · Process Control

Code Discussion

As you read through the program, you can see that the coding that corresponds to the
various elements of the flowchart are well highlighted using comments.

The pushbutton switch is active-low, meaning that its value is 0 when pressed. This is
because the pushbutton is pulled up to Vdd when not pressed and brought to Vss when
pressed. (This will be explored more in Chapter 3.)

Note that the flowchart block for 'Measure Photo Resistor' takes 3 lines of code. The
flowchart just describes the process and is not intended to be a line-by-line description.
This flowchart could be used for coding or designing any number of devices in any
number of languages.

Looking it Up: The PBASIC commands and programming techniques used here were
introduced in What’s a Microcontroller?, the recommended prerequisite to Process Control.
If you would like a refresher about specific program elements, you can look it up quickly in
the BASIC Stamp Editor’s Help file. Or, refer to the BASIC Stamp Syntax and Reference
Manual, available for purchase or free download from www.parallax.com.

Figure 1-5
BASIC Stamp
Editor’s Help
Files

The PBASIC
Syntax Guide
places
information and
examples for all
commands at
your fingertips.

 Chapter 1: Process Control and Flowcharts · Page 11

Challenge 1-2: Coding from a Flowchart

Figure 1-6 is a flowchart for a different sequence of operations, using the same circuit.
Code a program to match this sequence of events. Hints for coding are provided in the
flow symbols.

Figure 1-6
Challenge 1-2
Flowchart

Sound Buzzer at
2000 Hz for 1 Sec.

(Freqout)

Turn Off LED
(Low)

Turn On LED
(High)

1/2 Second Delay
(Pause)

Declarations
and

Initialization

½ Second Delay
(Pause)

Start

Page 12 · Process Control

ACTIVITY #3: FLOW AND CODING WITH CONDITIONAL BRANCHES

In most processes, measurements are made and decisions are then based on those
measurements (such as, in the shower example, whether to turn up or down the hot water
based on the current temperature). In the BASIC Stamp, there are multiple ways to code
decisions and conditional branches.

Parts Required

Same as Activity #2

Consider the flowchart in Figure 1-7. What should occur when the button is pressed, and
when it is not pressed?

Blink LED For
1/2 Second

Display
Pushbutton Value

Declarations
and

Initialization

1/4 Second Delay
(Pause)

True

False

Button
Pressed

Read
Pushbutton

Start

Figure 1-7
Conditional LED Blink
Flowchart

 Chapter 1: Process Control and Flowcharts · Page 13

If you said the LED would blink on for ½ second when the button is pressed, and not at
all when not pressed, you would be correct.

Example Program: ConditionalLEDBlink.bs2

√ Enter, save and run ConditionalLEDBlink.bs2.

' -----[Title]---
' Process Control - ConditionalLEDBlink.bs2
' Blinks the LED based on state of Pushbutton
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 10 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PB PIN 13 ' Alias for pushbutton on P13
PBVal VAR Bit ' Bit variable to hold pushbutton value
PhotoVal VAR Word ' Word variable to hold RC Time value
BuzzerDur CON 250 ' Constant for duration of tone for buzzer

' -----[Main Routine]--
DO
 ' ******** Read Pushbutton
 PBVal = PB ' Read Pushbutton Value and assign to PBVal

 ' ******** Display Pushbutton value
 DEBUG CLS,"Pushbutton value = ", DEC PBVal,CR

 ' ******** Button Pressed Conditional and Code
 IF (PBVal = 0) THEN ' If pushbutton pressed is true then,
 HIGH LED ' blink the LED
 PAUSE 500
 LOW LED
 ENDIF
 ' ******** 1/4 second pause
 PAUSE 250
LOOP ' Loop back to DO to repeat continuously

Code Discussion

The IF…THEN…ENDIF block is used to test the condition. Based on the result, the
program will execute the code within the block if true or skip over it if false.

Page 14 · Process Control

 IF (PBVal = 0) THEN ' If condition is true then,
 HIGH LED ' blink the LED
 PAUSE 500
 LOW LED
 ENDIF
 ' ******** 1/4 second pause
 PAUSE 250

When the button is not pressed, the conditional test of PBVal=0 will result in false
because the value of PBVal is 1. Execution will branch to after the ENDIF, executing the
PAUSE 250.

When the button is pressed, PBVal will in fact equal 0; PBVal=0 will be true, the code
within the block will be executed, and the LED will blink.

Code Formatting Tip: While indents in lines are not required, they do help to visually
represent code that is common to sections.

Challenge 1-3: Code for True and False Conditions

Many times, different code must be executed depending on whether a condition is true or
false. The IF…THEN…ELSE...ENDIF structure can be used to perform this task. If the
condition is false, the code in the ELSE section will be executed.

IF (condition) THEN
 Code to run if true
ELSE
 Code to run if false
ENDIF

√ Figure 1-8 is a flowchart that requires different code depending on whether the

button is pressed or not. Modify ConditionalLEDBlink.bs2 to match the
flowchart's operation.

 Chapter 1: Process Control and Flowcharts · Page 15

Sound Speaker
at 2000 Hz

for 1 Second

Display
Pushbutton Value

Declarations
and

Initialization

1/2 Second Delay
(Pause)

TrueFalse
Button

Pressed

Read
Pushbutton

Blink LED

A

A

Start

Figure 1-8
Conditional LED
Blink or Tone
Flowchart

Page 16 · Process Control

ACTIVITY #4: PREDEFINED PROCESSES WITH SUBROUTINES

Parts Required

Same as Activity #2

As more operations are added to the flowchart, it can become quite large and complex.
The same holds true for programs. In the previous programs, all operations were
performed within the main routine, and the same held true in the flowchart.

As the process increases in size and complexity, it is best to break it down into more
manageable pieces. By looking at the main loop of the flowchart or the main routine of
the code, it is easy to see the overall operation of the program without being
overwhelmed by the amount of code. Finally, analyzing or troubleshooting is much
easier if it can be performed without having to flip between several pages or continually
scroll up or down to different sections of the program. For example, consider the
flowchart in Figure 1-9.

Looking at the main loop, it is easy to see the overall operation of the process. The pre-
defined processes take the place of specialized code to perform these operations. Each
pre-defined process has its own flowchart to define its operation. How will the process
operate based on this flowchart? What occurs if the light level is low?

 Chapter 1: Process Control and Flowcharts · Page 17

Figure 1-9 Light Alarms using Predefined Processes Flowchart

Declarations
and

Initialization

Read
Photo Resistor

1/2 Second Delay
(Pause)

Check Light
High

Check Light
Low

Start

100 ms Pause

Return

Display
Warning

Sound
High Tone

True

False

Light
Too Bright

Check
Light High

200 ms Pause

Return

Display
Warning

Sound
Low Tone

Check
Light Low

True

False

Light
Too Low

Read
Photo Resistor

Read
Light Level

Display
Light Level

Return

Page 18 · Process Control

Example Program: LightAlarmsWithSubroutines.bs2

√ Enter and run LightAlarmWithSubroutines.bs2.

' -----[Title]---
' Process Control - LightAlarmWithSubroutines.bs2
' Sounds alarm based on photoresistor readings
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PhotoVal VAR Word ' Variable to hold RC Time value
PhotoMin VAR Word ' Holds minimum light level value
PhotoMax VAR Word ' Hold maximum light level value

' ---[Initialization] --
PhotoMin = 500 ' Set minimum light value
PhotoMax = 5000 ' Set maximum light value
PAUSE 1000 ' Allow connection to stabilize -- for Chapter 2

' -----[Main Routine]--
DO
 GOSUB ReadPhoto
 GOSUB CheckLightHigh
 GOSUB CheckLightLow
 PAUSE 500
LOOP

' -----[Subroutines]---

ReadPhoto: ' Read light level and plot values
 HIGH Photo
 PAUSE 10
 RCTIME Photo,1,PhotoVal
 DEBUG DEC PhotoVal, ",", DEC PhotoMin, "," ,DEC PhotoMax,CR
RETURN

CheckLightHigh: ' Test if high light level
 IF (PhotoVal < PhotoMin) THEN
 DEBUG "LIGHT LEVEL HIGH!",CR
 FREQOUT Buzzer,100,3000
 PAUSE 100
 ENDIF
RETURN

CheckLightLow: ' Test if low light level
 IF (PhotoVal > PhotoMax) THEN
 DEBUG "LIGHT LEVEL LOW!",CR

 Chapter 1: Process Control and Flowcharts · Page 19

 FREQOUT Buzzer,200,1000
 PAUSE 200
 ENDIF
RETURN

√ Move your hand over the photoresistor, and watch the Debug Terminal. What

occurs as the light level RC time is
o Less than 500?
o Between 500 and 5000?
o Greater than 5000?

Your Debug Terminal should look similar to Figure 1-10. It displays the current level
and the low- and high-level set points.

Figure 1-10
Debug
Terminal
Light Level
Alarms

Values or tolerances of the photoresistor and capacitor may vary along with ambient
light level where you are. Adjust the high and low level setpoints accordingly in the
initialization section of your code.

Code Discussion

Using GOSUB…RETURN works well with our flowchart structure. The subroutines are the pre-
defined processes. When the GOSUB call is run, program execution branches to the named
routine. The routine code is executed. When complete, RETURN causes execution to
branch back to the code after the GOSUB call.

Page 20 · Process Control

Programming Tip: Every routine called with a GOSUB must exit with a RETURN. Internal
pointers keep track of GOSUBs and RETURNs, and if not matched properly, will result in
erroneous behavior of the processor.

Challenge 1-4: Add an Operational Indicator

1. Add a pre-defined process block to the main loop of the flowchart in Figure 1-9.
2. Also add a process flowchart to turn on the LED for 0.25 seconds at every pass

through the main loop in order to indicate proper operation of the system.
3. Add code to LightAlarmWithSubroutines.bs2 to match the flowchart.

ACTIVITY #5: CONDITIONAL LOOPING

Many times in a process it is necessary to repeat a sequence based on a condition. On
the other hand, halting or pausing an execution until a certain condition exists may be
required. Consider the process of starting a piece of industrial machinery. Until
conditions are met, such as an oil pump running, there may be no need to continue farther
into the process. A conditional loop could be used to ensure that a condition exists prior
to continuing with the sequence.

Parts Required

Same as Activity #2

Examine the Conditional Looping flowchart in Figure 1-11.

 Chapter 1: Process Control and Flowcharts · Page 21

Figure 1-11 Conditional Looping Flowchart

Request
Frequency
(1-4000)

Return

True

False

Frequency
Not in Range

Accept
Frequency

Get
Frequency

Request
Number of

Times (1-10)

Return

True

False

Count Not
in Range

Accept
Count

Get
Count

Times Sounded =
Times Sounded +1

Return

True

False

Times
Sounded < =

Count

Play
Frequency

Sound
Tone

Times Sounded
= 1

Start

Declarations
and

Initialization

Wait For
Button

Get
Frequency

Sound
Tone

Get
Count

Display Message
To Press Button

Return

True

False

Button Not
Pressed

Wait For
 Button

Page 22 · Process Control

Example Program: ConditionalLooping.bs2

√ Enter, save and run ConditionalLooping.bs2.
√ To begin, press the pushbutton as directed by the Debug Terminal.
√ Enter a frequency to play and the number of times to play it by typing a value

into the white text box at the top of the Debug Terminal, and then pressing
Return or Enter.

√ Test using valid and invalid values.

' -----[Title]---
' Process Control - ConditionalLooping.bs2
' Sounds tone using conditional loops
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PB PIN 13 ' Alias for pushbutton on P13
PBVal VAR Bit ' Bit variable to hold pushbutton value
PhotoVal VAR Word ' Variable to hold RC Time value
FreqVal VAR Word ' Frequency to sound
CountVal VAR Byte ' Number of tones to sound
X VAR Byte ' General Counting variable

' -----[Main Routine]--
DO
 GOSUB WaitForButton
 GOSUB GetFreq
 GOSUB GetCount
 GOSUB SoundTone
 PAUSE 1000
LOOP

' -----[Subroutines]---
WaitForButton:
 DEBUG CLS, "Press the pushbutton to begin",CR
 DO
 LOOP WHILE (PB=1)
RETURN

GetFreq:
 DO
 DEBUG CR,"Enter the frequency to play (1 to 4000)",CR
 DEBUGIN DEC FreqVal
 LOOP UNTIL (FreqVal <= 4000) ' loop until within range
RETURN

 Chapter 1: Process Control and Flowcharts · Page 23

GetCount:
 DO
 DEBUG CR,"Enter the number of times to play (1 to 10)",CR
 DEBUGIN DEC CountVal
 LOOP WHILE (CountVal > 10) ' loop while out of range
RETURN

SoundTone:
 FOR X = 1 TO CountVal ' Start X at 1 for counting up to CountVal
 FREQOUT Buzzer,500,FreqVal
 DEBUG "Buzzing ", DEC X,CR
 NEXT ' Add 1 to X and loop if X <= CountVal
RETURN

Program Discussion

The ConditionalLooping.bs2 program uses conditional loops in a variety of ways. The
DO...LOOP WHILE within the WaitForButton routine will repeat while the condition is
true. This occurs while the value of the pushbutton input is 1 or not pressed. Once the
pushbutton is pressed, the condition will be false and the loop will end.

In the GetFreq routine, the DO...LOOP UNTIL will repeat until a value within range has
been entered. DEBUGIN accepts data from the Debug Terminal and stores it as a decimal
in the FreqVal.

In GetCount, a DO...LOOP WHILE is used to request the number of times to play the tone
and will repeat while the value is outside the appropriate range.

In SoundTone, a FOR...NEXT loop is used. This is a special conditional loop used for
repeating a sequence a set number of times:

FOR variable = Start_Value TO End_Value

The loop begins with the defined value set to the Start_Value. The code within the
loop is performed. When NEXT is encountered, the variable is incremented and checked
against the End_value. If the variable is not greater than the End_Value, the loop
repeats. X is started at 1 and the loop continues until X exceeds the value entered by the
user for CountVal.

Compare the flowcharts to the code for each routine. The use of either WHILE or UNTIL is
at the programmer's discretion as long as it performs the task intended.

Page 24 · Process Control

Challenge 1-5

√ Save ConditionalLooping.bs2 under a new name, then add variables and code
required to allow the user to enter the duration the tone should be played (entered
in milliseconds). Limit the maximum allowable duration to 1000 milliseconds.

CONCLUSION

Process control refers to the control of one or more system parameters. Typically, some
form of input is used to adjust this process. A simple process, such as controlling
temperature, may be performed in multiple ways. The control and complexity of the
system is based on need. For process control the BASIC Stamp is ideally suited for many
systems.

Flowcharts are a visual representation of a program or a process. The flowchart
represents the necessary steps to perform the desired actions. Through the use of
symbols the actions of the program or process are graphically depicted. With knowledge
of PBASIC, the programming language of the BASIC Stamp, the process represented by
the flowchart may be programmed into the BASIC Stamp.

Means to control output devices include using the HIGH and LOW commands; FREQOUT is
used to sound tones; data may be sent to the computer using the DEBUG instruction.
Conditions may be checked and simple true/false decisions may be made using the
IF...THEN instructions. Looping is performed using the DO...LOOP, and adding WHILE
or UNTIL looping may be performed conditionally. Programs may be broken down into
smaller processes that are called with the GOSUB command and exited with the RETURN
command.

 Chapter 1: Process Control and Flowcharts · Page 25

SOLUTIONS TO CHAPTER 1 CHALLENGES

Challenge 1-1 Solution

Figure 1-12 Shower Temperature Flowchart with True/False

A

Turn On
Cold

Turn On
Hot

Check
Temperature

Get
In

Stop

T

F

Too
Hot.

T

F

Too
Cold.

A Turn Down
Hot

A Turn Up
Hot

Wait
3 Seconds

Start

Note that the yes-no questions became true-false statements.

Challenge 1-2 Solution

Your program might look like this:

' -----[Title]---
' Process Control - SimpleFlowchartChallenge.bs2
' Code from flowchart
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photoresistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10

Page 26 · Process Control

' -----[Main Routine]--
DO
 HIGH LED ' Turn ON LED
 PAUSE 500 ' 1/2 second delay
 FREQOUT Buzzer, 1000, 2000 ' Sound buzzer at 2000Hz for 1 second
 LOW LED ' Turn OFF LED
 PAUSE 500 ' 1/2 second delay
LOOP ' Loop back to DO to repeat continuously

Challenge 1-3 Solution

' -----[Title]---
' Process Control - ConditionalLEDBlinkChallenge.bs2
' Modify ConditionalLEDBlink for If-Else
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PB PIN 13 ' Alias for pushbutton on P13
PBVal VAR Bit ' Bit variable to hold pushbutton value
PhotoVal VAR Word ' Word variable to hold RC Time value
BuzzerDur CON 250 ' Constant for duration of tone for buzzer

' -----[Initialization]--

' -----[Main Routine]--
DO
 ' ******** Read Pushbutton
 PBVal = PB ' Read Pushbutton Value and assign to PBVal

 ' ******** Display Pushbutton value
 DEBUG CLS,"Pushbutton value = ", DEC PBVal,CR

 ' ******** Button Pressed Conditional and Code
 IF (PBVal = 0) THEN ' If pushbutton pressed is true then,
 FREQOUT Buzzer, 1000,2000 ' True - Sound buzzer
 ELSE
 HIGH LED ' False - Blink the LED
 PAUSE 500
 LOW LED
 ENDIF
 ' ******** 1/4 second pause
 PAUSE 250
LOOP ' Loop back to DO to repeat continuously

 Chapter 1: Process Control and Flowcharts · Page 27

Challenge 1-4 Solution

1. To the main flowchart’s loop, add another predefined
process:

2. Make a flowchart for the predefined process (names
should match):

3. To the programs Main Routine DO...LOOP add a
subroutine call for your predefined process:

 GOSUB Indicator

 Under the Subroutines section, add the subroutine for the predefined process:

 Indicator:
 HIGH LED
 PAUSE 250
 LOW LED
 RETURN

Challenge 1-5 Solution

' -----[Title]---
' Process Control - ConditionalLoopingChallenge.bs2
' Sounds tone using conditional loops
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
Photo PIN 0 ' Alias for photo resistor circuit on P0
LED PIN 5 ' Alias for LED on P5
Buzzer PIN 10 ' Alias for buzzer on P10
PB PIN 13 ' Alias for pushbutton on P13
PBVal VAR Bit ' Bit variable to hold pushbutton value
PhotoVal VAR Word ' Variabe to hold RC Time value
FreqVal VAR Word ' Frequency to sound
CountVal VAR Byte ' Number of tones to sound
DurVal VAR Word ' Duration to sound tone
X VAR Byte ' General Counting variable

Page 28 · Process Control

' -----[Main Routine]--
DO
 GOSUB WaitForButton
 GOSUB GetFreq
 GOSUB GetCount
 GOSUB GetDuration
 GOSUB SoundTone
LOOP

' -----[Subroutines]---
WaitForButton:
 DEBUG CLS, "Press the pushbutton to begin",CR
 DO
 LOOP WHILE (PBVal=1)
RETURN

GetFreq:
 DO
 DEBUG CR,"Enter the frequency to play (1 to 4000)",CR
 DEBUGIN DEC FreqVal
 LOOP UNTIL (FreqVal <= 4000) ' loop until within range
RETURN

GetCount:
 DO
 DEBUG CR,"Enter the number of times to play (1 to 10)",CR
 DEBUGIN DEC CountVal
 LOOP WHILE (CountVal > 10) ' loop while out of range
RETURN

GetDuration:
 DO
 DEBUG CR,"Enter the duration to play tone in milliseconds (0 to 1000)",CR
 DEBUGIN DEC DurVal
 LOOP WHILE (DurVal > 1000) ' loop while out of range
RETURN

SoundTone:
 FOR X = 1 TO CountVal ' Start X at 1 for counting up to CountVal
 FREQOUT Buzzer,DurVal,FreqVal
 DEBUG "Buzzing ", DEC X,CR
 NEXT ' Add 1 to X and loop if X <= CountVal
RETURN

