
Page 186 · Process Control

ACTIVITY #2: SIGNAL CONDITIONING

The analog to digital converter resolves an analog value to a digital value. The
ADC0831, as configured, coverts an input voltage of 0 to 5 volts to an 8-bit value (byte)
of 0 to 255, respectively, as shown in Figure 6-4. The reason for the value of 255 is that
the ADC0831 is an 8-bit ADC. The maximum value of 8 bits is 255. When looking at a
binary value, such as 11111111, each position from right to left is a higher power of 2,
with the Least Significant Bit (LSB – right most) having a value of 20, or 1. The Most
Significant Bit (MSB – left most) has a value of 27 or 128. A binary value of 11111111
would be the sum of each position with a 1 or:

128 + 64 + 32 + 16 + 8 +4 + 2 + 1 = 255

A binary value of 10011001 converted to decimal would be:

128 + 0 + 0 + 16 + 8 + 0 + 0 + 1 = 153

Figure 6-4
Voltage to Binary
Conversion Transfer
Function

Figure 6-4 shows that the input voltage (0-5 V) is resolved to a binary value (0-255).
This linear transfer function can be written as a line equation:

y = mx + b

rjagodowski
From Parallax Process Control Text, Chapter 6.

Chapter 6: Open Loop Continuous Process Control · Page 187

Where m is the slope of the line, and b is the y-intercept (where the line crosses the Y-
axis), which is 0 in this case.

The slope, m, is the change in y for a given change in x. m = ∆y/∆x. In Figure 6-4 the
denoted ∆y is around 50 for a given ∆x of 1 V, for a slope of 50/1 V. While we are only
approximating the changes from the graph, any two points on the linear line will yield the
same slope. It's best to choose two known values. We know that a voltage of 0 V in will
result in a binary value of 0, and a voltage of 5 V in will result in a binary value of 255.
Given these two points:

m = ∆y/∆x = (255í0)/(5 Ví0 V) = 51/V

This provides a general equation of:

y = (51/V)x

Testing the input value of 2 V:

y = (51/V)2V + 0 = 102

Another way of stating the general line equation is as a transfer function for our specific
system:

Binary Value = (∆Output/∆Input)Input
Binary Value = (∆Binary Value/∆Vin)Vin
Binary Value = (51/V)Vin

∆y is ∆Output since that is how much the ADC binary value will change for a given ∆x,
or change in input to the ADC.

Since there are only 255 possible steps between 00000000 and 11111111, the ADC is
limited to how finely it can resolve a voltage. What would be the bit value for voltages
of 1.05 V and 1.06 V? 53.55 and 54.06. But since only integer values can be used, they
would both have byte counts of 54, rounding to the nearest integer. In terms of
temperature, this change between 105 °F and 106 °F would not be measurable.

When the BASIC Stamp processes the binary value, the process is reversed where the
byte value is converted into a temperature using code. In performing the conversion, a

Page 188 · Process Control

line equation can again be used where the change in output temperature will be 0-500 °F
(based on the transfer function of 0.01 V/°F) for the change in input value of 0 to 255.

Temp = m(Bit Value) + b where b = 0
m = ∆Output/∆Input = ∆Temperature Span/∆Byte Value = 500 °F/255 = 1.96 °F
Temp = 1.96 °F x Byte Value

Each change of 1 in byte value will signify a temperature change of 1.96. Since the ADC
is limited on resolution, the output will have distinct steps as you have probably noted in
many experiments.

Example Program: AdcSpanOffset.bs2

√ Using the same circuit as Activity #1, enter, save and run AdcSpanOffset.bs2.

' -----[Title]---
' Process Control - AdcSpanOffset.bs2
' Tests the spanning and offset input range of the ADC 0831 using PWM
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--

ADC_ByteValue VAR Byte ' Analog to Digital Converter data
V_Offset VAR Byte ' Offset voltage read from StampPlot
V_Span VAR Byte ' Span voltage read from StampPlot
TempF VAR Word ' Calculated temp in hundredths of degree F

ADC_CS PIN 13 ' ADC Chip Select pin
ADC_Clk PIN 14 ' ADC Clock pin
ADC_Dout PIN 15 ' ADC Data output

ADC_VRef PIN 10 ' Pin for PWM to set ADC voltage span
ADC_Vminus PIN 11 ' Pin for PWM to set ADC Offset

' -----[Initialization]--
PAUSE 1000 ' Allow connection stabilization

' -----[Main Routine]--
DO
 GOSUB ReadSP
 GOSUB SetADC
 GOSUB ReadADC
 GOSUB CalcTemp
 GOSUB UpdateSP

Chapter 6: Open Loop Continuous Process Control · Page 189

 GOSUB PlotPoint
 PAUSE 100
LOOP

' -----[Subroutines]---
ReadSP:
 DEBUG CR,"!READ [(txtADCoffset),*,10]",CR ' obtain offset volt. in tenths
 DEBUGIN DEC V_Offset
 PAUSE 50
 DEBUG "!READ [(txtADCspan),*,10]",CR ' obtain span voltage in tenths
 DEBUGIN DEC V_Span
 PAUSE 50
 RETURN

SetADC:
 PWM ADC_Vminus, V_Offset * 255/50,100 ' Apply PWM to set offset volt.
 PWM ADC_Vref, V_Span * 255/50,100 ' Apply PWM to set span voltage
 RETURN

ReadADC: ' Read ADC 0831
 LOW ADC_CS ' Enable chip
 SHIFTIN ADC_Dout, ADC_Clk, MSBPOST,[ADC_ByteValue\9] ' Clock in ADC data
 HIGH ADC_CS ' Disable ADC
 RETURN

CalcTemp: ' y = mx + b
 ' where y=temp,
 ' m = (change in output)/(change in input) = voltage Span/255
 ' x = ADC value read, b = offset, y = temperature in hundredths
 ' temperature = (Span/255)Byte + Offset
 TempF = (V_Span * 1000)/255 * ADC_ByteValue + (V_Offset * 1000)
 RETURN

UpdateSP:
 DEBUG "!O txtByteBin = ", BIN8 ADC_ByteValue,CR, ' Update w/ binary ADC val
 "!O txtByte = ", DEC ADC_ByteValue,CR ' Update w/ decimal ADC val
 DEBUG "!O txtTemp = [", DEC TempF,",/,100]",CR ' Update w/ temperature/100
 RETURN

PlotPoint:
 DEBUG "!FCIR (txtByte),(txtTemp),0.3A,(WHITE)",CR ' Plot white circle at
 PAUSE 100 ' byte, Temp as X,Y
 DEBUG "!FCIR ,,,(BLUE)",CR ' Plot again in blue
 RETURN

√ Load StampPlot macro sic_pc_adc_span_offset.spm.
√ Verify that "ADC Span" is set to 5 and "ADC Offset" is set to 0 in StampPlot.
√ Connect and plot. A small blinking dot will appear on the screen, marking the

temperature.

Page 190 · Process Control

√ Read down from the dot to determine the byte count read from the ADC. The
display is not a “.vs time” plot, so if the temperature doesn’t change much, you
will only see a few dots.

√ Pinch the LM34, or briefly apply a heat source, to change the temperature
reading.

Figure 6-5 is a plot of the byte count read from the ADC and the calculated temperature.
Over a range of 0 °F to 500 °F, there appears to be very good resolution based on how
close the individual points are.

Figure 6-5 ADC Byte Count vs. Calculated Temperature - Full Range

If we were monitoring and controlling temperature over 0 °F to 500 °F, this may be
adequate resolution. But our temperatures of focus will be in the 70 °F to 120 °F range.
How finely can the system monitor and control over this range?

√ Click the "Scale Plot 70í120F" button on the interface.

Chapter 6: Open Loop Continuous Process Control · Page 191

Figure 6-6 is a capture of the plotted data for this range. Doesn't look so good now, does
it? With the current resolution and span, the system can only resolve temperatures to
1.96 °F. This isn't very good for precise temperature monitoring and control.

Figure 6-6 ADC Byte Count vs. Calculated Temperature - Narrow Range

For better resolution the system needs to be modified to focus on the temperatures of
interest. One means to do this would be amplify the voltage before converting to a digital
value.

Page 192 · Process Control

Consider (but do not build) the schematic in Figure 6-7. What effect would it have on the
resolution?

Figure 6-7
Voltage Monitoring
With Gain

DO NOT BUILD

Recall that the op-amp is configured in a non-inverting configuration where the gain is:

Rf/Ri + 1

For the given values, the gain is:

30 kȍ/10 kȍ + 1 = 3+1 = 4

For the potentiometer range of 0 to 5 volts, this would provide an output of 0 to 20 V
(providing that the op-amp was powered from a voltage above 20 V). The ADC is still
converting the voltage range of 0 to 5 V to a byte count of 0 to 255. Consider what
occurs to the slope of the graph in Figure 6-8 of sensor voltage to voltage ADC and byte
value when gain is applied.

Chapter 6: Open Loop Continuous Process Control · Page 193

Figure 6-8
Vin vs. ADC
Voltages

With no gain, or actually a gain of 1 or unity gain, the voltage to the ADC is the voltage
sensed at the ADC. When the op-amp is used with a gain of 4, an input voltage of 1.25 V
will provide 5 V to the ADC. Note the slope of the line:

m = ∆Output/∆Input = (5í0)/(1.25í0) = 5/1.25 = 4

The slope of the line is also the gain, giving a line equation of:

VADC = 4(ADC-IN) + 0

What is the resolution of the circuit now? In comparing the applied voltage to the bit
count: 1.25 V/255 = 0.0049 V/bit value. In terms of temperature:

125 °F/255 = .49 °F/bit value

...which is 4 times the resolution previously measured.

Page 194 · Process Control

In terms of byte value, the resolution is 255/1.25 V or 204/V. Our high temperature of
interest, 120 °F (1.2 V), would provide a byte value of 1.2 V x 204 = 244.8 or 245. The
low temperature of interest, 70 °F (0.7 V), would provide a byte value of 0.7 x 204 =
142.8 or 143. So the temperature range of interest covers a byte value change of
245í143 = 102. The majority of our available byte values (0 to 101 and 246 to 255) are
still outside the temperature range of interest.

What line equation would best serve the needs of the monitoring and control system?
Figure 6-9 is the ideal line needed to convert the temperature range of interest to a digital
value for measurement. The temperature range of 70 °F (0.7 V) to 120 °F (1.2 V) is
amplified and covers 0 to 5 volts into the ADC for byte values of 0 to 255.

Figure 6-9
Ideal Conversion for
70 °F-120 °F

Let's analyze the line and develop the line equation.

y = mx + b
m = ∆Output/∆Input = (5í0 V)/(1.2í0.7 V) = 5 V/0.5 V = 10

Since the line does not cross at (0,0), b can be calculated given any single known point,
such as 0.7 V and 0 V or 1.2 V and 5 V.

Chapter 6: Open Loop Continuous Process Control · Page 195

5 V = 10(1.2 V) + b
5 Ví12 V = b
b = í7 V
y = 10(x) í7 V or VADC = 10(VIN) í 7 V

From this equation we can see that a gain of 10 is required and 7 must be subtracted from
the product. There are op-amp configurations that can add or subtract voltages, called
summing amplifiers. Figure 6-10 illustrates an op-amp circuit which performs the
equation of VO = 10(VI) í7 V.

This circuit utilizes a two-stage op-amp configuration to perform the equation or transfer
function. Stage 1 provides the gain using an inverting amplifier. The Stage 2 amplifier is
configured as a summing amplifier.

Stage 1:

VS1 = (íRf1/Ri1)VI
 = (í100 kȍ/10 kȍ)VI
VS1 = í 10 VI

Stage 2:

 VO = VS1(íRf2/Ri2) + Voffset (íRf2/Ri3)

 = VS1 (í10 kȍ/10 kȍ) + 0.7 (í10 kȍ/1 kȍ)
 = VS1 (í1) +0.7 (í10)
VO = íVS1í7

Combining the results of the two stages provides the final voltage into the ADC.

VO = íVS1í7
 = í (í 10 VI) í 7

VO = 10 VI í 7

Page 196 · Process Control

Figure 6-10 Amplify and Offset Signal with Op-Amps (DO NOT BUILD)

Testing it out with a voltage of 1.2 V at VI representing 120 °F:

Stage 1: í10(1.2 V) = í12 V

Stage 2: í(í12 V) í 7 V = 5 V

Of course, accomplishing this requires supply voltages in excess of +/í 12 V for the op-
amps. Another option is to offset the input prior to amplifying the voltage.

VO = 10(VI í 0.7)

Consider the differential amplifier in Figure 6-11. Recall that this configuration
amplifies the difference between the two input voltages.

The formula for this configuration is:

VO = (VI1íVI2)(Rf/Ri)

where VI1 is the voltage from the LM34 and VI2 is the offset voltage of 0.7 V. For the
voltage of 1.2V from the sensor, relating to a temperature of 120 °F:

VADC = (1.2 V í 0.7 V)(100 kȍ/10 kȍ) = (0.5 V)(10) = 5 V

Chapter 6: Open Loop Continuous Process Control · Page 197

Figure 6-11
Offset and Gain
using Differential
Configuration

DO NOT BUILD

How would the 0.7 V be set? One way would be to use a potentiometer that is adjusted
to 0.7 V as the input for VI2. In both configurations we are setting the offset and span for
the voltage range of interest.

Fortunately, the ADC0831 converter can directly perform the spanning and offsetting.
Consider the pin-out of this device as shown in Figure 6-12.

 Figure 6-12
ADC0831 Pin Out

Up until now Vin(-) has been connected to Vss (0 V) and Vref has been connected to Vdd
(5 V). These two inputs set the offset and span voltages over which to convert. If the
ADC0831’s Vin(-) is set to 0.7 V and Vref is set to 0.5 V, the ADC will convert the range
of 0.7 V to 1.2 V to a byte value of 0 to 255 respectively.

Page 198 · Process Control

One method of using potentiometers to set these two pins is shown in Figure 6-13.

Figure 6-13
Span and Offset of
ADC0831 Using
Potentiometers

DO NOT BUILD

Instead of using potentiometers, which must be manually adjusted for different ranges,
can you think of a simple way to have the BASIC Stamp set the offset and span voltage
of the ADC directly?

Recall how filtered PWM was used in Chapter 5 to set the voltage of the fan. The same
principle may be applied here as shown in Figure 6-14. Due to the low impedance of the
Vref input, the filtered PWM must be buffered prior to being applied. The ADC0831’s
Vin(-) is higher impedance and does not require buffering.

Additional Parts Required:

(1) LM358 Op-Amp
(2) 0.68 µF Capacitors
(2) 10 kΩ Resistors

√ Construct the circuit in Figure 6-14.
√ In StampPlot, set "ADC Span" to 0.5 and "ADC Offset" to 0.7.
√ Connect and plot.
√ Heat the LM34 again.
√ Click the "Scale Plot 70-120F" button on StampPlot to cover the selected range.

Chapter 6: Open Loop Continuous Process Control · Page 199

Figure 6-14 Span and Offset of ADC Using PWM - Schematic

Figure 6-15
Span and Offset of
ADC Using PWM

Wiring Diagram

Page 200 · Process Control

Note the new resolution as shown in Figure 6-16 compared to previous tests shown in
Figure 6-4. Gaps between points are temperatures that were not sampled. Note that
temperature resolves to .196 °F/bit by observing the change in voltage.

Figure 6-16
ADC Measurement
0 to 500 °F and
70 to 120 °F

The PWM style of setting offset and span may not be 100% accurate but is adequate
for our testing. Offset values below 0.5 V should be avoided for better accuracy.
Combined offset and span voltages used to set the upper voltage limit (Vspan + Voffset)
should be 3.5 V or less since the op-amp is only powered from 5 V.

Program Discussion

The ReadSP subroutine reads the values of offset and span from StampPlot. These values
are used in calculations and in setting the ADC. Since the BASIC Stamp does not use
floating-point math (values with decimal points), the values are multiplied by 10 so that
0.5 is stored as 5, or tenths of a volt.

 DEBUG CR,"!READ [(txtADCoffset),*,10]",CR
 DEBUGIN DEC V_Offset

Chapter 6: Open Loop Continuous Process Control · Page 201

The SetADC subroutine uses the span and offset values to control the Vref and Vin(-) pins
respectively. The settings are scaled accordingly to apply 0-5 V to these pins using
PWM. Note that it is again using our transfer function line equation, y = mx + b where
b= 0, though slightly rearranged.

PWM ADC_Vminus, V_Offset * 255/50,100

If 255 were divided by 50 first, the slope would have been 5 and not 5.1. By multiplying
first, while ensuring 65535 is not exceeded, we have better resolution and accuracy.

PWM value = (voltage desired in 10ths) x (byte value span)/(max. voltage in 10ths)
PWM value = (voltage in tenths) x 255/50

The ReadADC subroutine reads the ADC and stores the byte collected in ADC_ByteValue.
After enabling the IC using the Chip Select (CS) pin, the data from the ADC is shifted in
using a clock pulse on the clock (CLK) line and data is collected from the Data Out (DO)
pin. The \9 means that 9 bits are collected, though the first is not used and is discarded.

 LOW ADC_CS
 SHIFTIN ADC_Dout, ADC_Clk, MSBPOST,[ADC_ByteValue\9]
 HIGH ADC_CS

In the CalcTemp section, the values of V_Span and V_Offset are multiplied by 1000.
Working with the original ADC values, a span of 0.5 would have related to 50 °F. If we
used 50 in our equation for 50/255 this would equal 0.196, but since the BASIC Stamp
does not perform floating-point math, this would be 0! By multiplying by 1000, the
result is 196 providing a reading of 8007 for a temperature of 80.07. Again, a precaution
is that 65535 is not exceeded for any intermediary calculation, such as with a span of
5.0 V.

TempF = (V_Span * 1000)/255 * ADC_ByteValue + (V_Offset * 1000)

The UpdateSP subroutine updates the txtByte and txtByteBin text boxes with the byte
value in decimal and binary respectively, as read from the ADC0831, and also updates
txtTemp with the current temperature divided by 100.

 DEBUG "!O txtByteBin = ", BIN8 ADC_ByteValue,CR,
 "!O txtByte = ", DEC ADC_ByteValue,CR

 DEBUG "!O txtTemp = [", DEC TempF,",/,100]",CR

Page 202 · Process Control

In the PlotPoint subroutine, StampPlot's Filled Circle (!FCIR) instruction is used to
plot a point in white based on the X coordinate of ADC_ByteValue and the Y coordinate
of the temperature with a size of 0.3 absolute. After a 100 ms pause, the point is plotted
using the same parameters in blue to give the effect of a blinking point.

 DEBUG "!FCIR (txtByte),(txtTemp),0.3A,(WHITE)",CR
 PAUSE 100
 DEBUG "!FCIR ,,,(BLUE)",CR

Challenge 6-2: Spanning and Scaling for an Air Conditioner System

Instead of eventually controlling an incubator, assume the system under control is an air
conditioning system for an equipment room. The temperature needs to be monitored and
controlled over a range of 50 °F to 90 °F.

1. What values of V_Span and V_Offset would be appropriate?
2. What would be the resolution in degrees Fahrenheit for this range of

temperature?
3. Draw a graph of byte value vs. temperature.
4. What would be the equation for this line?
5. At 72 °F, what would be:

a. The output of the LM34?
b. The byte value of the ADC0831?

ACTIVITY #3: MANUAL CONTROL OF INCUBATOR

Have you ever ridden in a vehicle with someone who controls the cabin temperature by
cycling the heater or air conditioner on and off? Too hot – turn on the AC. Too cold –
turn off the AC. Every several miles they switch again to keep the cabin comfortable.
Manual control of a system with a small allowable range can be time consuming (and a
little frustrating to other passengers).

In this activity you will construct the incubator circuit used in the remainder of this text.
We will begin by manually controlling the incubator and testing the response. Our
incubator is a closed system containing a resistor acting as a heater and the LM34 for
temperature monitoring.

