Power Supplies Half-Wave Rectifier

Use your oscilloscope to take screenshots in all places where a space is provided to graph the waveform. Your screenshot should include your name/initials and relevant measurements. Post your screenshots as a reply to the Topic for this lab exercise.

Name:	Date:	UJ
		The second secon

FIGURE 65-1

FIGURE 65-2

PROJECT PURPOSE The purpose of this project is to demonstrate the action of a simple half-wave rectifier and the effects of capacitor filtering.

PARTS NEEDED

- \square DMM
- ☐ Oscilloscope
- \square CIS
- ☐ Function generator or audio oscillator
- ☐ Diode: Silicon, 1-amp rating
- ☐ Resistors
 - 10 kΩ 100 kΩ
- ☐ Capacitors
 - 0.1 μF
 - 1.0 μF

SPECIAL NOTE:

The following formulas will be helpful for drawing proper conclusions about the results of your work:

Input $V_{rms} = 0.707 \times V_{pk}$ Effective ac

Output $V_{dc} = 0.318 \times V_{pk}$ Average dc out

PROCEDURE

- 1. Connect the initial circuit as shown in Figure 65-1.
- 2. Set the function generator (sine-wave mode) or audio oscillator to a frequency of 100 Hz and V_A to 3 V_{rms} . Sketch two complete cycles of the input waveform in the "Observation" section.

A OBSERVATION

Waveform:

3	Measure	the do	voltage	output	across	R_I	(dcom	,).

OBSERVATION

c _{out} =			
· —			

▲ CONCLUSION

The dc output voltage should be ap	proximately what percentage	of the rms input
voltage? Approximately alternation is $0.637 \times V_p$ and the effective of the second se	_ %. Since the average voltage of ffective value is $0.707 \times V_{pk}$, t	value over one achen V_{dc} must be
about tenths of V_{rms} , becomes Since the diode can conduct only had	cause 0.637 is about	tenths of 0.707.
the half-cycle the diode does not con	duct isV.	

4. Connect the oscilloscope across R_L . Sketch the waveform for two complete cycles in the "Observation" section. Indicate the maximum and minimum voltage levels.

OBSERVATION

Waveform:

A CONCLUSION

For the half-cycle the diode does conduct, the peak V_{out} should be about _____ times V_{rms} (neglecting the small diode voltage drop). The end result is that the average dc_{out} over the entire cycle of ac input is about _____ times V_{rms} (again, neglecting the diode voltage drop).

- 5. Connect a $0.1-\mu F$ filter capacitor in parallel with a new value of R_L , as shown in Figure 65-2.
- 6. Set the function generator (sine-wave mode) to a frequency of 100 Hz and an amplitude of 3 V_{rms} . Sketch two complete cycles of the input waveform. Measure and record the ac input voltage (acin).

A OBSERVATION

Waveform:

7.	scope waveform f	rd the dc voltage output across R_L (dc ound across R_L).	out). Sketch two complete ac	cycles of the oscillo-
	A OBSERVATION	dc _{out} =	V.	
		Waveform:		
		+		
		0		
		0		
	▲ CONCLUSION	Is the dc output voltage higher or lo This can be explained by the fact th		
		valu	e of the input voltage, rather	r than the average or
		effective values. Since the charge p	ath for the capacitor is through	gh the low resistance
		of the forward-conducting diode, th	e capacitor has time to charg	e to the
		value		
		begins to decrease from its	value, th	e capacitor begins to
		can discharge completely, the next than the voltage remaining on the		nt where it is higher
		and charge the capacitor to the	voltage	value again.
8.	Replace the 0.1-µ	F filter capacitor with a 1.0-μF capac	citor.	
9.	Record the dc _{out} a	and sketch two complete ac cycles of	the oscilloscope waveform for	ound across R_L .
	A OBSERVATION	$dc_{out} = $	V.	
		Waveform:		
		+		
		0		
		_		
	A CONCLUSION	Is dc _{out} higher or lower with the 1 This is because the RC discharge	.0-μF filter capacitor?	er capacitor is much
			the 0.1-µF capacitor. The lar	
		capacitor, the (higher, lower)		
		during each nonconducting half-cy	cle for the diode. This mean	s the average dc out-
		put voltage (increases, decreases) filter capacitance.	with	n increasing values of

Power Supplies

Bridge Rectifier

Name:	Date:	

FIGURE 66-1

NOTE: ONLY MEASURE THE OUTPUT VOLTAGE OF THESE CIRCUITS. DO NOT CONNECT YOUR SCOPE PROBE TO **MEASURE THE 12.6 VAC** INPUT. You cannot measure the input and output voltages of this fullwave bridge rectifier simultaneously with the probes we have in the lab. You will cause a short to ground, possibly damaging a diode and/or the 12.6VAC output.

FIGURE 66-2

PROJECT PURPOSE In this project you will study the action of a bridge rectifier and demonstrate the effects of capacitor filtering.

PARTS NEEDED

- \square -DMM
- □ Oscilloscope
- □ CIS
- ☐ Function generator or audio oscillator
- ☐ Diodes: Silicon, 1-amp rating (4)
- □ Resistor
 - $10 \text{ k}\Omega$
- ☐ Capacitor
 - $1.0 \mu F$
- ☐ Transformer (12.6 V with center-tapped secondary) or, a 12.6 Vac source

PROCEDURE

- 1. Connect the initial circuit as shown in Figure 66-1.
- 2. Apply 12.6 Vac to the circuit. Measure the dc voltage output across R_L (dc_{out}).
- 3. Sketch the secondary waveform. Indicate the maximum and minimum voltage levels. Measure the secondary voltage.

A OBSERVATION

Waveform:

4. Measure the dc voltage output across R_L (dc_{out}).

A OBSERVATION

$$dc_{out} =$$
_____V.

A CONCLUSION

Current (flows, does not flow) ______ through R_L on both alternations of each ac input cycle. This means the bridge rectifier is a (half-wave, full-wave) ______ rectifier. According to theory, if there were no diode voltage drops, the average dc output of the bridge circuit without filtering should be ______ $\times V_{rms}$ of the applied ac. Does your measured value of dcout for this step agree reasonably with theory? _____. How do you account for most of the difference, if any? ______

5. Connect the oscilloscope across R_L . Sketch the waveform for two complete cycles in the "Observation" section. Indicate the maximum and minimum voltage levels.

A OBSERVATION

Waveform:

A CONCLUSION

The frequency of the waveform across the output resistor is (one-half, equal to, double) ______ the secondary frequency.

- 6. Connect the 1.0- μ F filter capacitor across R_L as shown in Figure 66-2.
- 7. Measure and record the ac voltage at the secondary (ac_{sec}) and the dc voltage output across R_L (dc_{out}). Sketch two complete ac cycles of the oscilloscope waveform found across R_L .

A OBSERVATION

$$ac_{sec} = V_{rms}$$
.

 $dc_{out} = V_{rms}$.

Waveform:

A CONCLUSION